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We made significant progress in controlling the electrical and optical properties of a variety of wide bandgap nanowire systems 

and also found surprisingly high mobilities in amorphous IZO films ,which can be used as TFTs grown at room temperature on 

substrates such as glass and plastic.

(a) Nanowires

Background:

(i) GaN nanowires

Nanowires have attracted significant research attention in recent years due to their unique structural, electronic, optical, and 

mechanical properties. These properties make nanowires promising building blocks for potential applications such as 

transistors, lasers,photodetectors, and chemical and biological sensors.

There has also been significant recent interest in the development of hydrogen sensors for use in fuel cells as an energy source 

to replace petroleum. Since hydrogen is a hazardous, odorless, and highly flammable gas, hydrogen gas sensors play a critical 

role, particularly for fuel leak detection in spacecraft, automobiles, and aircraft, fire detectors, and diagnosis of exhaust and 

emissions from industrial processes. Nanowires are becoming promising candidates for H2 gas sensors due to their high 

surface to volume ratio. Wide bandgap semiconductors such as GaN and ZnO, have excellent potential for H2 gas sensing 

because of their sensitivity to surface charge and ability to operate over large temperature ranges. In addition, the use of a 

metallic coating can functionalize the surface of nanowires by dissociating H2 into

atomic hydrogen. While H2 sensors based on nanowires such as ZnO, SnO2, and In2O3 with excellent response and recovery 

characteristics have been reported in the literature, there have been few reports on H2 gas sensors based on GaN nanowires, 

which should offer excellent environmental stability.

Results:

We have grown the GaN nanowires by catalytic chemical vapor deposition (CVD) using gold thin films as catalyst on a Si wafer 

with an insulating SiO2 layer. The structural characterization of the as-grown nanowires by several methods shows that the 

nanowires are single-crystal wurtzite GaN. Photoluminescence measurements under 325 nm excitation show a 

near-band-edge emission peak around

~3.4 eV. The hydrogen sensors are fabricated by contacting the as-grown GaN nanowires by source and drain electrodes and 

coating them with a thin layer of Pd. Hydrogen sensing experiments using the fabricated devices show high sensitivity response 

(ppm detection limit at room temperature) and excellent recovery. This work opens up the possibility of using high quality GaN 

nanowire networks for hydrogen sensing applications.

(ii) ZnO Nanowires:

Background:

ZnO is another wide bandgap materials that is attracting attention for application in transparent nanowire transistors because of 

the ease of synthesis of ZnO nanostructures, their good transport properties, the availability of heterostructures and the 

possibility for opto-electronic integration. A variety of both top and bottom gate n-type ZnO nanowire transistors have been 

reported, showing generally high on/off ratios (10^4-10^7), sub-threshold voltage swings of 130-300 mV/decade and excellent 

drain current saturation. Much higher electron mobilities and improved device stability are found when surface passivation is 

employed, pointing to the importance of controlling surface

charge density. Simulations show that defects such as grain boundaries lead to a decrease of drain current. While the dc 

characteristics of such devices are generally reasonable, there have been no reports of the rf or high speed switching 

performance. Additional work is needed on optimized gate dielectrics, reliability and functionality of ZnO nanowire transistors. 

There has been extensive interest in recent times in the synthesis of ZnO nanowires by a number of methods using both 

catalyst and catalyst-free approaches. Semiconductor nanowire device structures are expected to have potential advantages in 

improved carrier confinement over their thin film counterparts. The bandgap of the

ZnO may be increased by addition of Mg.

Results:

We recently developed a novel technique of selective-area growth of ZnO nanorods on the surfaces of other semiconductors or 

glass. Arrays of different patterns were easily fabricated with conventional photo-resist for masking. The resist patterned 

substrate was spin coated with ZnO nanocrystals used as seed materials. ZnO nanorods were grown in solution of 20 mM zinc 

nitrate hexahydrate

(Zn(NO3)2•6H2O) and 20 mM hexamethylenetetramine (C6H12N4) at 95 C. The concentration of reactants, pH and 

temperature were carefully controlled in a flask with polypropylene autoclavable cap for 3 hours growth. Subsequently, the 

substrate was removed from solution, thoroughly rinsed with de-ionized water to remove any residual salts and dried in air at 

the room-temperature. After nanorod growth, negative PR was removed with standard photoresist remover in a warm bath at 

60 C for 30 minutes. Even though not shown here, the photoluminescence spectrum, obtained from the patterned ZnO nanorod 

area and substrate only at room temperature shows the free exciton emission at 3.24 eV. Also, the ZnO nanorods can be 

integrated with AlGaN/GaN HEMT sensors by incorporating the nano-rods on the HEMT gate sensing area, the total sensing 

area increases significantly. The conventional AlGaN/GaN HEMT detects the ambient changes through the “gate sensing area”. 

This area is defined as gate length × gate width in the regular HEMT. Although, we can increase the gate width to gain higher 

drain current from the transistor, the sensor detection sensitivity will be the same for HEMT with both short and longer gate 

width. This is due to the signal and background current proportionally increasing at the same time. Increasing the gate length 

will increase the parasitic resistance of the HEMT and the drain current decreases. Thus, the detection sensitivity goes down. 

Therefore, the only way to increase the sensitivity with the same ”gate dimension” is to grow 3D structures on the “gate sensing 



area” to

increase the total sensing area with the area expansion to the third dimension. The ZnO nanorod matrix provides a 

microenvironment for immobilizing negatively charged GOx and retains its bioactivity, and passes charges produce during the 

GOx and glucose interaction to the AlGaN/GaN HEMT. With such low detection limit, it is possible to dilute <0.1 micro-liter of 

EBC in 100-200 micro-liter phosphate buffer solution (PBS) and directly measure the glucose concentration to eliminate the 

effect of pH variation. Due to the fast response time and low volume of the EBC required for the measurement, the technology 

can be realized as handheld and real-time glucose sensing .

(b) Flexible TFTs

Background:

Wide bandgap oxide-based thin film transistors (TFTs) have attracted much attention for applications like flexible electronic 

devices. The

fabrication of thin film transistors at low temperature on flexible substrates (e.g. plastic or paper) is a key technique to realize 

flexible electronics. So far, hydrogenated amorphous silicon (α-Si:H or organic semiconductor based TFTs have been widely 

used in display. However, they have some limitations, including light sensitivity and relatively low field effect mobilities (<1 

cm2.V-1.s-1 for α-Si:H, ~ 2.7 cm2.V-1.s-1 for pentacene single crystals, and ~ 1.5 cm2.V-1.s-1 for pentacene thin films). A 

number of groups have demonstrated TFTs based on α-oxide semiconductors such as zinc oxide (ZnO), indium gallium oxide 

(InGaO), zinc tin oxide (ZnSnO), indium zinc oxide (InZnO)and indium gallium zinc oxide (InGaZnO). These materials showed 

surprisingly high electron mobilties (~ 10 cm2.V-1.s-1) even for α-films deposited near room temperature. High electron 

mobilities in the TFT channel translate to higher switching speeds of the devices. In addition, α-films have the potential for 

better TFT performance and stability than polycrystalline films because of the lack of grain boundaries in the channel. 

Amorphous-InGaZnO TFTs were first reported by Nomura et al. The concept of transparent amorphous  oxide semiconductors 

(TAOS) with large electron mobilities was reported earlier. However, a typical problem with the oxide-based TFTs reported in 

the literature has been poor device stability. Recently, we have reported that α-InGaZnO-based TFTs fabricated on glass 

substrates show excellent long-term stability at room temperature.

Results:

High-performance amorphous (α-) InGaZnO-based thin film transistors (TFTs) were fabricated on flexible polyethylene 

terephthalate (PET) substrates coated with indium oxide (In2O3) films. We also achieved TFTs on clean-room tape and even 

paper substrates. The InGaZnO films were deposited by RF magnetron sputtering with the presence of O2 at room 

temperature. The n-type carrier concentration of InGaZnO film was ~2x1017 cm-3. The bottom-gate-type TFTs with SiO2 or 

SiNx gate dielectric operated in enhancement-mode with good electrical characteristics: saturation mobility 11.5 cm2.V-1.s-1 for 

SiO2 and 12.1 cm2.V-1.s-1 for SiNx gate dielectrics and drain current on-to-off ratio >105. TFTs with SiNx gate dielectric 

exhibited better performance than those with SiO2. This is attributed to the relatively high dielectric constant (i.e. high-k 

material) of SiNx. After

more than 500 hours aging time at room temperature, the saturation mobility of the TFTs with SiO2 gate dielectric was 

comparable to the as-fabricated value and the threshold voltage shift was 150 mV.
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